
SFP.0 Short Form Specification Page 1
Do not attempt to design to this Short Form specification

AdvancedTCA ®

PICMG SFP.0
Revision 1.0

System Fabric Plane Format
Short Form Specification

This short form specification is derived from the PICMG SFP.0 Revision 1.0 System Fabric

Plane Format specification as approved on March 24, 2005 by the PICMG® Executive
Membership. For guidelines on the design of the SFP.0 compliant boards and systems, refer to

the full specification–do not use this short form for any design decisions.

SFP.0 Short Form Specification Page 2
Do not attempt to design to this Short Form specification

SFP.0 – System Fabric Plane Format

1 INTRODUCTION

1.1 Purpose
This Short Form version of the SFP.0 specification is intended to provide an overview of the System
Fabric Plane (SFP) Format. Note that most of the SFP.0 detailed low-level requirements have been
removed in this Short Form version. Do not attempt to design to this Short Form specification.

1.2 Why SFP?
Many systems internally insert a protocol layer between Layer 2 (e.g. Ethernet) and Layer 3 (e.g.
Internet Protocol). This is often referred to as a Layer 2½ protocol. Another common name for this
type of protocol is a “Shim” (i.e. because it is inserted by the system between Layers 2 & 3).

The use of a Shim is very common on internal system fabrics. Many routers, media servers, firewalls,
and other similar network equipment use these Shim protocol layers internally. But up to now these
Shim layers have all been proprietary. In order to enable an ecosystem of Advanced TCA board
vendors to interoperate with each other as a single system, a common standardized Shim layer needs to
be defined. SFP defines this standardized Shim layer.

1.3 What is SFP?
The System Fabric Plane (SFP) framework is intended to be a standard way for modules to
communicate in Comm Fabric type applications, such as:

• Routers
• Wireless Radio Network Controllers (RNCs)
• Voice over Packet Gateways
• Media Servers
• Firewalls
• Etc.

or any combination of the above. Note that these are all prime candidate applications for ATCA.

SFP is a layer that encapsulates many types of application protocols, such as:
• Internet Protocol Datagrams
• TDM/Voice (I-TDM)
• ATM (AAL-1, AAL-2, AAL-5)
• Wireless SDUs / PDUs (small packets for Wireless applications)
• Etc.

Note that SFP does not aim to be an end-user protocol. It exists only within the confines of a
Converged Communications System (e.g. Content Processing Router).

SFP.0 Short Form Specification Page 3
Do not attempt to design to this Short Form specification

1.4 What is a System Fabric?

A System Fabric is a Layer-2 network (e.g. LAN) that has additional protocols implemented in the
endpoint nodes such that the collection of these nodes acts together as a single system. Note that a
System Fabric may be implemented as:

• a LAN between blades in a backplane
• a LAN that spans multiple backplanes
• a private LAN between Rack Mount Servers that form a system
• any combination of the above

1.5 SFP Encapsulations / Tunneling Examples
SFP can be used to encapsulate any other protocol. In other words, any other protocol can be tunneled
through SFP. Some examples of these are given below. Note that SFP encapsulations are not limited
to this set of examples.

Note that different encapsulations may be used within the same SFP Frame. For example, an IP packet,
an ATM AAL-2 CPS packet, and an I-TDM payload may be multiplexed together as different packlets
of the same SFP Frame. SFP imposes no restrictions on what types of packlet encapsulations may be
multiplexed together.

1.5.1 Internet Protocol Packet

. . .

L a y e r 2
H e a d e r

C o n v e y
ance 2

H e a d e r

Pay load

N P F
M essage
H e a d e r

P
ad

Packlet #1

C o n v e y
ance 1

H e a d e r

I P
H e a d e r

T C P /
U D P

H e a d e r

Packle t #2

S F P F r a m e

1.5.2 ATM Cell

. . .

Layer2
H e a d e r

C o n v e y
ance 2

H e a d e r

A T M C e l l Payload
(48 bytes)

N P F
M essage
H e a d e r

P
ad

Packlet #1 (64 Bytes)

C o n v e y
ance 1

H e a d e r

A T M C e ll
H e a d e r

(5 bytes)

Packlet #2

S F P F r a m e

1.5.3 ATM AAL-2 CPS packet

. . .

L a y e r 2
H e a d e r

C o n v e y
ance 2

H e a d e r

C P S P a y l o a d

N P F
M essage
H e a d e r

P
ad

Packlet #1

C o n v e y
ance 1

H e a d e r

CID

Packle t #2

S F P F r a m e

L I

U U I

H E C

SFP.0 Short Form Specification Page 4
Do not attempt to design to this Short Form specification

1.5.4 TDM/Voice (I-TDM 1ms Protocol)

S F P F r a m e

Packle t #1

Layer2
H e a d e r

C o n v e y
ance 1

H e a d e r

C o n v e y
a n c e 2

H e a d e r

T D M
S e g m e n t

N P F
M essage
H e a d e r

S e g m e n t
ID

S e g m e n t
ID

S e g m e n t
ID

T D M
S e g m e n t

T D M
S e g m e n t

T D M
S e g m e n t

S e g m e n t
ID

The I-TDM protocol is specified in a separate document (SFP.1).

1.6 Scope

1.6.1 Layer2 Compatibility

SFP can ride on top of many different Layer2 Fabric protocols, such as:
• Ethernet
• Advanced Switching (AS)
• CSIX
• Infiniband
• Etc.

However, this specification will be limited in scope to Ethernet based Fabrics.

1.6.2 Flow Control

The SFP.0 headers do not currently specify any Flow Control or backpressure mechanisms. Such items
are handled at Layer 2 (i.e. Ethernet layer).

1.6.3 Higher Protocol Layers

This document (SFP.0) does not specify all the protocols above it. Some examples of SFP
encapsulations of existing protocols are given in section 1.5, but specifically the Internal TDM protocol
which is layered on top of SFP.0 is specified in a separate SFP.1 document. Protocols for other future
encapsulations may also be specified as additional SFP “dot specs” (e.g. SFP.2, SFP.3, etc.). All of
these potential future protocols would presumably also be layered on top of SFP.0.

SFP.0 Short Form Specification Page 5
Do not attempt to design to this Short Form specification

2 RATIONALE FOR SFP
Section 2 overviews the driving application level requirements that led to the creation of the SFP
protocol. Note that the whole of Section 2 is for informational purposes only and does not contain any
items for compliance testing.

The SFP headers are designed to:

1. Provide for rapid detection of errored or misrouted packets.

2. Provide for Segmentation / Reassembly of packets that are too large to fit within the MTU of the
fabric.

3. Provide for Multiplexing of multiple small packets within a larger fabric MTU in order to reduce
average Layer 2 overhead.

4. Provide a means to reduce or eliminate multiple redundant hash lookups.

5. Provide a means to carry ingress marking information.

6. Provide a means to extend the header.

7. Provide a modular interface to the low-level application using the fabric.

8. Be compliant with NPF Messaging.

9. Provide 64-bit alignment at header and payload boundaries to optimize operations by processors
with 64-bit data paths.

10. Provide a means to transport a packet that is shorter than the Fabric’s minimum frame size.

11. Provide an optional end-to-end system fabric integrity check.

Further elucidation of and descriptions of means to meet these criteria are provided in the following
sections.

2.1 Rapid Detection of Errored or Mis-Routed Packets

2.1.1 Errored Packets detectable by CRC

Most Layer 2 protocols provide a Layer 2 CRC that tells the receiver if the packet was modified during
transit. If the modification was not intentional, it is called an error.

Implication: The fabric must be able to detect if a packet has been errored so that the control plane can
take corrective action. It must also be able to do so as rapidly as possible.

Fabric switches typically drop errored packets. In this case, the intended receiver will never get the
packet. To solve this particular problem, one introduces a flow label and a sequence number.

This flow label identifies the flow from the source node and its Virtual Output Queue (VoQ) to the
destination node. Call this flow label a Flow Bundle.

Along with the Flow Bundle is a sequence number, called an error detection sequence number. This
sequence number just increments and wraps. A single bit will suffice, since if a packet is mis-routed the
next packet will be out of sequence and the control plane will be notified.

Thus, use of a Flow Bundle and an error detection sequence number of one bit is sufficient, in
combination with a Layer 2 CRC, to rapidly detect errored packets.

SFP.0 Short Form Specification Page 6
Do not attempt to design to this Short Form specification

However, it is possible that more than a few packets in a row are errored. The greater the number of
bits in the error detection sequence number, the less likely that a multi-packet error could go
undetected. Thus, more bits would be better, perhaps 4 to 8.

2.1.2 Misrouted Packets

Misrouting can occur without errors. For example, a software bug could write an erroneous entry into a
switch chip’s routing table. Then, an unintended receiver will start receiving the misrouted flow.

Implication: The fabric must be able to detect misrouted packets as rapidly as possible.

A Flow Bundle (as defined above) and misroute detection sequence number are sufficient to detect
this condition. There are two cases:

1. If the unintended receiver does not have an active flow set up for the Flow Bundle, then the
condition is detected immediately.

2. The unintended receiver does have an active flow set up for the Flow Bundle. Call this flow the
correct flow. In this case, the two flows’ sequence numbers will conflict, and the condition can be
detected quickly.

To increase the probability of a mis-match between the two flows’ misroute detection sequence
numbers, the modulus of the misrouting detection sequence number should be somewhat higher than
that of the error detection sequence number, e.g. 4 to 8 bits.

Thus, a Flow Bundle and a misroute detection sequence number are sufficient to detect misrouted
packets.

2.2 Segmentation / Reassembly
The fabric must be able to carry application layer packets that are larger than the fabric MTU (maximum
transmission unit). This is accomplished by segmenting the packet as it is placed onto the fabric and
reassembling it when it is taken off the fabric.

Implication: The fabric must be able to perform Segmentation/Reassembly.

If there is completely reliable delivery, then a Flow Bundle (as defined above) plus an EOP (end of
packet) bit is sufficient. The receiving algorithm is to always concatenate the current fabric packet onto
the current application packet in memory. In addition, if the EOP bit is set, then send the current
application packet to application, and start a new current application packet with nothing in it.

Individual fabric packets can be errored or not arrive, as described above, and this is detectable by the
errors detection algorithm stated above. In order to recover rapidly, an SOP (start of packet) bit is also
used. Use of an SOP bit provides every possible description of a fabric packet: start of packet, middle of
packet (neither EOP nor SOP set), end of packet, and complete packet (EOP and SOP set).

The recovery algorithm is that after an errored or missing fabric packet is detected, the current
application packet is reset, and all fabric packets are discarded until one with an SOP bit is detected.

However, if the errored or misrouted packet detection mechanisms fail, then the
Segmentation/Reassembly algorithm can fail. This failure would appear as an SOP packet, followed by a
number of middle packets (neither EOP nor SOP), followed by an EOP packet. Some of the middle
packets could be dropped, or worse, both an EOP and an SOP packet along with the middle packets.
The result would be packet with data for one destination being sent to another destination.

SFP.0 Short Form Specification Page 7
Do not attempt to design to this Short Form specification

To avoid this failure scenario, the errored and misrouted packet detection mechanisms must be as robust
as possible, implying that more rather than fewer bits are needed.

In essence, one can define that a Segmentation/Reassembly sequence number is required, again based
upon the Flow Bundle, on the order of at least 8 bits.

However, SOP is not absolutely required. With just an EOP and Segmentation/Reassembly sequence #,
errors will be dealt with adequately. The only issue is that you perhaps lose 2 application packets when
a packlet is errored. However, if we are running tight on bits, it may be better to have an extra
Segmentation/Reassembly sequence # bit than an SOP bit. Bottom line: SOP is nice to have but not
required.

2.3 Multiplexing
Multiplexing is needed in order to reduce the overhead associated with sending many small packets over
the fabric.
Implication: The fabric must enable the multiplexing of small packets.

System Fabric Plane System Fabric Plane
Multiplexing ExampleMultiplexing Example

. . .Layer2
Header

Convey
ance 2 Payload

NPF
Message

Pad

Packlet #1 Packlet #2

SFP Frame

Packlet #n

Convey
ance 1

Section 4.1 includes a tradeoff analysis that shows the potential advantages of multiplexing.

A key software element used for SFP Multiplexing is the Virtual Output Queue (VoQ). This is an
output queue for all traffic that goes to a specific destination on the fabric. VoQs are used in Comm
Fabrics to eliminate congestion in fabric switches, so VoQs are not unique to SFP multiplexing.

SFP.0 Short Form Specification Page 8
Do not attempt to design to this Short Form specification

For SFP Multiplexing, packets, or parts of packets, all on the same VoQ, are each encapsulated with an
SFP header, to create packlets, which are concatenated into an SFP Frame, which is sent to the
destination over the fabric.

At the destination, the SFP Frame is De-Multiplexed. Each packlet within the SFP Frame is extracted
and placed in the appropriate destination queue.

The only fields required for multiplexing are a length field and a last packlet field. Note that a Length
field is also required for Short SFP Frames (section 2.10), so the only field that is unique to
Multiplexing is the last packlet field.

2.3.1 Last Packlet Field

When multiple packlets are put together in an SFP Frame, the parser needs to know when the last
packlet has been reached. In SFP Frames longer than the minimum Layer2 frame-size, the last packlet
could be algorithmically determined by looking at the length of the Layer2 frame and the lengths of the
individual packlets. However, when the SFP Frame is shorter than the minimum Layer2 frame-size,
there must be some way to determine the last packlet without relying on the Layer2 frame-size. A field
defining that a particular packlet is the last one in the SFP Frame satisfies this requirement.

The last packlet fields need only be a single bit.

Once available, an additional use for the last packlet field is to simplify the packlet parsing code. Given
the last packlet bit, the parsing code does not have to perform the ongoing length computation
described above in order to determine the last packlet. Thus, the last packlet field provides a small
computational benefit, as well.

2.3.2 Length

Each packlet must have a length defined. If there were only one packlet in an SFP Frame, then the
length could be derived from Layer 2. However, when there are multiple packlets in an SFP Frame
(which is the multiplexing case), one must know how long the individual packlets are.

The Length field also solves the Short SFP Frame requirement (see section 2.10).

2.4 Eliminating Redundant Hash Lookups
When a packet first comes into a system from outside, it must be classified. This is typically done by a
hash lookup, (e.g. on an IP packet’s headers).

If the results of this lookup are not saved somehow, then every intermediate node that the packet
traverses will have to perform the same lookup.

That information is saved in an application Flow ID, which is attached to the packet and used whenever
it enters a node to provide rapid classification and indexing into the receiving application’s data
structures.

2.5 Carrying Ingress Marking Information
When a packet arrives from outside the system, and after it is classified and metered, a marking
operation is applied if appropriate. The marking performs two functions: it defines the service level that
the packet should receive; and it determines whether the packet is within its service level agreement
(SLA).

SFP.0 Short Form Specification Page 9
Do not attempt to design to this Short Form specification

The packet will be determined to require a certain service level, which then must accompany the packet,
as it determines in which specific Virtual Output Queue (VoQ) for a given destination node the packet
will be placed.

For example, VoIP packets will have a real-time service level; TCP packets destined for control
elements in the system will have high priority service level because they are most likely control traffic;
TCP packets destined for routing through the system or to be terminated in deep packet inspection node
will have only best effort service level applied, unless they are part of a specific SLA. The service level
determines which VoQ the packet is placed in when it is forwarded across the fabric. The real-time VoQ
is serviced at a higher priority than the best effort VoQ.

The service level is most likely encoded in the application Flow ID.

If the packet is in a flow for which there is an SLA, then it will be metered and marked. For example, a
possible implementation is that if the packet is:

1. conforming to the SLA then it will be marked “green”

2. moderately out of conformance then it will be marked “yellow”

3. completely out of conformance, it will be marked “red”
When congestion occurs as packets flow through the system, those marked “red” will be preferentially
dropped, then “yellow”, and “green” only as a last resort.

By convention, the marking stating whether the packet is within or out of its SLA is called color.

2.6 Extending the Header
Encapsulation protocols generally provide a field that defines what comes next. This field provides
information to the decapsulation process that allows it to decide how to further parse the packet. For
example, Ethernet has an Ethertype; InfiniBand has a Next Link Type.

This field is not strictly necessary. The destination may well know exactly what is in the packet without
needing any further information about its type.

But if this field is necessary, then in order for the SFP header to be compliant with NPF, this field must
be one byte in length, the first byte of the NPF Messaging header, and called SLOT_CFG_ID.

2.7 Modular Low-Level Application Interface
The SFP must present a clean interface to the low-level applications that use it. For example, low-level
applications may be in Firmware, Drivers or Network Processor MicroEngines.

Given low-level coding issues, modularity will be relative. However, at the very least, there must be a
clean separation between data elements that are used by the application and those that are used by the
fabric.

For example, it seems unacceptable to expose the concept of a purely fabric specific data element such
as an error detection sequence number to the low-level application.

2.8 NPF Messaging
The Network Processor Forum has defined as set of messaging fields and protocols for setting up these
fields. Note that this NPF messaging is not specific to Network Processors. It may be used by any
processor technology.

SFP.0 Short Form Specification Page 10
Do not attempt to design to this Short Form specification

However, NPF messaging is optimized for performance. For example, NPF messaging does not use
traditional TLV (Type, Length, Value) type fields as this would significantly decrease performance.

Since Comm Fabrics are also typically optimized for performance, SFP has adopted a specific
implementation of NPF messaging. This NPF messaging layer is one of the two layers of SFP. The other
SFP layer is called the “Conveyance Layer”. These 2 SFP layers will be detailed later in this document.

2.9 64-bit Alignment of Headers and Payloads
For Multiplexing, Segmentation and ITDM processing, aligning the fields on 64-bit boundaries is critical
to performance when using processors with 64-bit data paths. Therefore, the SFP headers in general
must be a multiple of 64-bits.

The vast majority of today’s processors have 64-bit data paths (e.g. Pentium® Processor, Sparc®,
PowerPC® Network Processors, etc), so this is not an Intel-specific thing. Specifically for ITDM,
starting on a 64-bit boundary is a big performance advantage on any processor with a 64-bit data path.
This would include a server on a private LAN.

SFP.0 Short Form Specification Page 11
Do not attempt to design to this Short Form specification

2.10 Short SFP Frames
If a small packlet (e.g. AAL-2 CPS packet) is placed by itself into an SFP Frame, it might be that the
SFP Frame will not fill a minimum Layer 2 packet. In this case, there must be padding at the end of the
SFP Frame. There must be a way to distinguish this padding from the real payload.

A Length field in the SFP headers allows the receiver to determine the real length and discard any left
over padding.

System Fabric Plane System Fabric Plane
Short Frame ExampleShort Frame Example

Convey
ance 2

PayloadNPF
Msg

Packlet #1

Short SFP Frame

Ending
Pad

Added only when
required to meet
Layer2 minimum

packet length

Layer2
Header

Convey
ance 1

2.11 End-to-End System Fabric Integrity Check
Although the layer 2 protocol of the fabric typically performs a hop by hop integrity check (e.g. CRC,
vertical/horizontal parity, etc), there is typically no layer2 integrity checking that spans the fabric system
fabric endpoints. The SFP checksum implements such an end-to-end integrity check. The use of the
checksum is optional.

SFP.0 Short Form Specification Page 12
Do not attempt to design to this Short Form specification

2.12 Terminology

• A System Fabric is a Layer-2 network (e.g. LAN) that has additional protocols implemented in
the endpoint nodes such that the collection of these nodes acts together as a system. Note that a
System Fabric may be implemented as:

o a LAN within a backplane

o a LAN that spans multiple backplanes

o a private LAN between Rack Mount Servers

o any combination of the above

• An application packet is the chunk of data that an application wishes to send over the fabric. It
is usually accompanied by some metadata.

• A packet, when used herein without other qualification, is an application level packet.

• Packet metadata includes, but is not limited to, the length of the packet and an application flow
label. It likely includes possibly a packet type (e.g. control or data).

• An application Flow ID is a tag that makes sense to the application.

• A packlet results from encapsulating either an entire packet, or a fragment of a packet, within an
SFP header. Multiple packlets are combined into an SFP Frame, to which is attached a Layer 2
header. The SFP Frame is sent over the Layer 2 Fabric.

• A Flow Bundle identifies a group of application level Flow IDs that share the same logical path
over the fabric. Specifically, the Flow Bundle identifies the:

o flow from a given source node at the destination node

o priority or “class of service” over the fabric

o geographical path over the fabric. For example, if there are 2 Ethernet LANs in a given
Fabric (i.e. for redundancy), and both LANs are active (i.e. active-active redundancy
scheme), then a packet may flow from a given source node to a given destination node
over either LAN, which represents 2 active geographical paths.

SFP.0 Short Form Specification Page 13
Do not attempt to design to this Short Form specification

2.13 Architecture

2.13.1 Principles

The proposed architecture of the solution follows these principles:

1. Header layer independence:

a. Conveyance header is for system fabric related info

b. NPF Messaging header is for application related info

c. Conveyance header does not depend on Messaging header, and vice versa

2. Flow Label meaning is negotiated by application (signaling)

2.13.2 Architecture

The architecture of the solution is based upon the principle of layering. In the picture below, flows
between entities 3 and 4 (applications) are carried over the transport provided by entities 1 and 2 (the
fabric ingress and egress entities). The layer controlled and used by entities 1 and 2 is the Conveyance
layer. The layer controlled and used by entities 3 and 4 is the NPF Messaging layer.

5

13 2 4

Conveyance

NPF
Messaging

1 2 Switch Fabric module - operates on Conveyance header

3 4 Forwarder module - operates on NPF Messaging header

Ingress
blade

Egress
blade

5 Switch Fabric hardware - operates on L2 header

Ingress
to SF

Egress
from SF

Ingress
fwd

Egress
fwd

SFP

SFP.0 Short Form Specification Page 14
Do not attempt to design to this Short Form specification

3 SFP PROTOCOL
This section defines the SFP protocol.

The various criteria described in Section 2, for the most part, carry directly down to fields that are
required in the SFP header. For example, for multiplexing we need a packlet length, and a last packlet
bit. For carrying service level and marking information we need appropriate fields, etc.

This Short Form version of the SFP.0 specification is intended to provide an overview of the System
Fabric Plane (SFP) Format. Note that most of the SFP.0 detailed low-level requirements have been
removed in this Short Form version. Do not attempt to design to this Short Form specification.

3.1 SFP Specific Fields

Packet

SFP-AS
Packlet

Conveyance
Header

SFP-AS
NPF

Messaging
Header

Link Header
e.g. Ex-AS,
Eth, CSIX

SFP-AS
Conveyance

Header 1

SFP
Conveyance

Header 2

SFP NPF
Messaging

Header

SFP includes the following 3 headers:
• SFP Conveyance Header 1. This occurs once per SFP Frame.

• SFP Conveyance Header 2. This repeats for every Packlet within the SFP Frame.

• SFP NPF Message Header. This repeats for every Packlet within the SFP Frame. However, if
Segmentation/Reassembly is required, the NPF Message Header is only valid on the 1st segment
(Start of Packet). See section 3.5 for example of this.

The contents of each header are implemented as shown in the table and figure below:

SFP Conveyance Header 1 6-10 bytes

 MPLS Label (contains Flow Bundle) 32 bits

 Timestamp (for time-based applications or for measuring fabric latency) 16 bits

 Pad (if required to align SFP Conveyance Header 2 on 64-bit boundary) 0-32 bits

SFP Conveyance Header 2 5 bytes

 Sequence Number (increments within Flow Bundle context) 8 bits

 SOP/EOP (for Segmentation and Reassembly) 2 bits

 Last Packlet (for Multiplexing) 1 bit

 Reserved (for Future Use) 2 bits

 Length of Packlet (to 2KB) 11 bits

 Checksum (optional use) 16 bits

SFP NPF Messaging Header 3+N bytes

 UID (Application/Instance/Format Flow Label) 24 bits

 Optional NPF Messaging Fields (e.g. Color, Timestamp, etc) N bits

Refer to the full specification of SFP.0 for specific format variations and bit locations.

SFP.0 Short Form Specification Page 15
Do not attempt to design to this Short Form specification

3.2 SFP Conveyance Header 1
This header occurs once per SFP Frame.

Refer to the full specification of SFP.0 for detailed requirements on this header.

3.2.1 MPLS Label (32 bits)

In the case of SFP, the MPLS Label represents the Flow Bundle. The Flow Bundle identifies:
1. The Source Node on the Fabric that produced this SFP Frame.
2. The class-of-service/priority on the Fabric
3. The path of the connection over the Fabric (if multiple active paths exist between 2 endpoints).

Note that, for many implementations, these 3 parameters essentially correspond to the Source Virtual
Output Queue that originated the SFP frame.

The path portion of the Flow Bundle generally corresponds only to active paths, and not to inactive
standby paths for redundancy. In particular, for active/standby redundant fabrics, it is generally very
useful to have the same Flow Bundle assignments persist after a failover. Therefore, the failover can
happen much more quickly. See section 4.3 for details.

In order to insure an interoperable ecosystem of different vendors SFP implementations, the following
software model is used.

SFP Software Model SFP Software Model
(Multi(Multi--Vendor Example)Vendor Example)

Vendor A
Hardware

Vendor A
Firmware

Vendor A
Drivers

Vendor A
APIs

Vendor B
Hardware

Vendor B
Firmware

Vendor B
Drivers

Vendor B
APIs

User Application

SFP Protocol

(Data Transport,
Fault Detection,

Multiplexing, etc.)

SFP APIs (Vendor A Specific)

(UID Management,
Flow Bundle Initialization)

SFP APIs (Vendor B Specific)

(UID Management,
Flow Bundle Initialization)

The User Application initializes all the Flow Bundles (i.e. 20-bit Labels within the MPLS Label field) for
all SFP endpoints via the Vendor Specific APIs.

SFP.0 Short Form Specification Page 16
Do not attempt to design to this Short Form specification

Different System Fabrics can allocate the Flow Bundle number space to each of the 3 parameters (i.e.
source, class, and path) differently, depending on specific requirements of the system. Also note that 20
bits is much more than typically required to hold the 3 parameters. For example a multi-chassis system
that has 256 blades, 8 priorities and 4 paths over the fabric would use only up to 8192 Flow Bundles,
and this would be a large system.

The User Application should allocate the Flow Bundle number space efficiently so as to minimize the
highest Flow Bundle number.

In addition, the Vendor Specific APIs may impose restrictions on the maximum Flow Bundle number in
order to ease the implementation of the destination Flow Bundle look-up tables.

Note that the requirements above allow the Flow Bundle to be a destination resource. In other words,
the destination may have a fixed array of state machines to track sequence numbers, segmentation /
reassembly state, etc. for each Flow Bundle. In the case that the total number of Flow Bundles in a
system exceeds the number of Flow Bundles supported by a particular destination implementation, that
destination implementation can still be used with limitations. In other words, large systems may be built
where not every source can talk with every destination over every path at every priority. In this case,
the Flow Bundle values going to 2 different destinations may be the same. So for large systems, the
Flow Bundle / MPLS Label may not uniquely identify a source/destination pair.

For qualifying the source node portion of the Flow Bundle number space, the only requirement is that
no two source nodes talk to the same destination using the same Flow Bundle.

So for small systems, a normal MPLS Label distribution scheme should suffice. In a large system, other
Flow Bundle / MPLS Label allocation algorithms may be necessary.

3.2.2 Timestamp (16 bits)

This field may be used for time based applications (e.g. I-TDM) in order to detect dropped, duplicated,
or out-of-order packets (e.g. for fault recovery scenarios).

 In addition, this field may be used to determine the amount of time it takes for a given SFP frame to
traverse the SFP Fabric (i.e. delivery latency). The SFP delivery latency may then be used to identify
paths of queuing congestion in the fabric.

The source node encodes the Timestamp field using 5 microsecond units. For example, if the Timer
value increases by one, this means that 5us of time has elapsed. If the Timer value increases by 200, 1
millisecond of time has elapsed.

There are no SFP.0 requirements on the accuracy of the timer. Also, any use of the Timer field at the
destination is optional and is not specified here.

Note that even though the Timer uses 5us units, there are no requirements to have a local time-base
which increments by 5us or less. For example, if a given implementation only has a 1 millisecond local
time-base available, then the source node simply increments the Timer field by 200 for each 1ms
increment of the local time-base. However, if there is a desire to measure the delivery jitter/latency of
certain packet flows across the fabric, then a higher resolution time-base would be beneficial.

3.2.3 Pad (0-32 bits)

This field is sized such that the SFP Conveyance Header 2 starts on a 64-bit boundary. If the Layer 2
header + MPLS Label + Time Stamp is already a multiple of 64-bits, the SFP Pad field is not used.

SFP.0 Short Form Specification Page 17
Do not attempt to design to this Short Form specification

3.3 SFP Conveyance Header 2
This header repeats once for every packlet in the SFP Frame.

Refer to the full specification of SFP.0 for detailed requirements on this header.

3.3.1 Sequence Number (8 bits)

The SFP sequence number is used for multiple purposes, as listed below:
• Error detection
• Misroute detection
• Segmentation and Reassembly
• Multiplexing

The sequence number increments within the context of a Flow Bundle (see section 3.2.1).
The sequence number also increments for each packlet within an SFP Frame, as shown below.

System Fabric PlaneSystem Fabric Plane
Sequence Number ExampleSequence Number Example

Packlet #1 Packlet #2 Packlet #3 Packlet #4

Layer2
Header Sequence # 7

SFP
Frame #1

Convey
ance 1 Sequence # 8 Sequence # 9 Sequence # 10 Sequence # 11

Packlet #5

Layer2
Header

Sequence # 12
SFP

Frame #2
Convey
ance 1

Sequence # 13 Sequence # 14 Sequence # 15 Sequence # 16

Layer2
Header Sequence # 17

SFP
Frame #3

Convey
ance 1 Sequence # 18 Sequence # 19 Sequence # 20 Sequence #21

Layer2
Header

Sequence # 22
SFP

Frame #4
Convey
ance 1

Sequence # 23 Sequence # 24 Sequence # 25 Sequence # 26

Time

Note: This diagram forms part of a requirementNote: This diagram forms part of a requirement

As packlets are de-multiplexed from an SFP Frame, a sequence number in the Conveyance Header of
each packlet within the SFP Frame provides a redundant check that the de-multiplexing parser is in the
correct state and position in the SFP Frame.

SFP.0 Short Form Specification Page 18
Do not attempt to design to this Short Form specification

Also, having a sequence number in each packlet allows different implementations of SFP to append the
sequence number at different layers. For example, one implementation may be that the SFP
Conveyance layer Encapsulation and Segmentation is implemented in software, but the VOQ and SFP
multiplexing functions are performed by hardware. In this scenario, sequence numbers are added in
software while hardware performs the multiplexing.

Application(s)Application(s)

System Fabric PlaneSystem Fabric Plane
Multiplexing Implementation ExampleMultiplexing Implementation Example

SFP Frame
Encapsulation

Output Scheduler /
SFP Multiplexer

SFP Packlet
Encapsulation

Output Queues

(Sequence #, Checksum,
Packet Length, SAR bits)

To Fabric

Application(s)

(L2 Header, MPLS Label,
Last Packlet bit)

(By Destination, Path,
Class of Service)

Software

Hardware

This is not the only recommended implementation of SFP. It’s just that the SFP sequence number
method shown above is flexible enough to accommodate this type of implementation, as well as other
implementations. Section 3.5 also touches on this flexibility.

Note that an additional sequence number may be required for certain types of application packets (e.g.
reliable connection for control plane data). This additional sequence number may go in the NPF header
or in various application layer headers (e.g. TCP). These additional sequence numbers are unrelated to
the conveyance layer sequence number.

3.3.2 SOP/EOP

These bits are used to perform segmentation / reassembly of application packets that are too big to fit in
a single fabrics’ MTU.

3.3.3 Last Packlet

This bit indicates whether or not this is the last packlet of the SFP frame (see section 2.3 for an
overview on SFP multiplexing).

SFP.0 Short Form Specification Page 19
Do not attempt to design to this Short Form specification

3.3.4 Reserved

These 2 bits are reserved for future use.

3.3.5 Length of Packlet

This field is used for Multiplexing and Short Frames (see sections 2.3 & 2.10).

3.3.6 Checksum

The Checksum is used for an optional End-to-End System Fabric Integrity Check (see section 2.11).

The use of the SFP Checksum is optional. Destination nodes may, or may not, verify the Checksum.
Source nodes may, or may not, calculate the checksum.

3.4 SFP NPF Messaging Header
This header repeats for every Packlet within the SFP Frame. However, if Segmentation/Reassembly is
required, the NPF Message Header is only valid on the 1st segment (Start of Packet). See section 3.5
for an example of this. Note that the SFP NPF Messaging Header is a specific base implementation of
the proposed NPF Messaging Header.

Refer to the full specification of SFP.0 for detailed requirements on this header.

3.4.1 UID (Application/Instance/Format Flow Label)

The 24-bit UID field identifies:
• The Application
• The Instance within the Application
• The Format of the message

The allocation of the UID number space is done so that specific processes at the destination node can
do a table look-up fairly easily. For his reason, the destination node is responsible for the allocation of
the UID number space. This allocation may be implemented in a number of ways, such as:

• The Vendor Specific API dynamically allocates UIDs on request.
• The Vendor simply documents the UID number space restrictions, and the User

application implements these restrictions.
• Etc.

Refer to section 3.2.1 for details on the Software Model.

3.4.2 Additional Optional NPF Messaging Fields

For certain types of packets, additional fields may be added to the NPF header (e.g. Color, Ingress
Timestamp, etc).

Note that certain types of encapsulation protocols (e.g. I-TDM) require the payload to start on a 64-bit
boundary. For these types of payloads, it is desirable not to add additional NPF messaging fields in
order to maintain 64-bit alignment with minimal header bytes.

For other types of encapsulated protocols that do not require 64-bit alignment (e.g. IP Datagrams),
additional fields may be added to the NPF header as needed.

SFP.0 Short Form Specification Page 20
Do not attempt to design to this Short Form specification

3.5 SFP Segmentation/Multiplexing Details
All SFP destination endpoints must be capable of demultiplxing multiple packlets in a single SFP frame.

The algorithm for multiplexing is as follows: If there is another user packet for the same Flow Bundle
that fits completely into the current SFP frame, then put it in, otherwise do not. The source node will
NEVER segment a user packet that would normally fit into a single SFP Frame.

An example of SFP is shown below, working on 3 packets in a VoQ:

1. The first packet in the VoQ is converted to a packlet. Because the next packet is large, it will
not fit completely into the rest of the SFP Frame with the first packlet, so the SFP Frame
containing the first packlet is finished.

2. The second packet in the VoQ is large enough that it must be segmented in order for it to be
carried across the fabric. Its first segment becomes the only packlet in the second SFP Frame. Its
second segment becomes the first packlet in the next SFP Frame.

3. The third packet in the VoQ fits completely into the rest of the SFP frame started by the second
segment of the second packet. The third packet becomes the second packlet in the third SFP
Frame.

Packets in VoQ P2

Segments P2.A P2.B

P3P1

P3P1

P2.A P2.B P3P1

Segmentation

Multiplexing

Multiplexing Algorithm: If there is another
packet av ailable which f its completely
into the current SFP f rame, put it in;
otherwise do not.

Pad to 64-bit
boundary

SFP Frames
(64-bit aligned)

Meta Meta Meta

Meta = application f low
label, packet ty pe, ...

Packlet Payload
SFP

Conv ey ance
Header 2

SFP
NPF Messaging

Header

Link Header
e.g. Ex-AS,
Eth, CSIX

SFP
Conv ey ance

Header 1

NPF Messaging
Header goes with
pay load, and is
ef f ectiv ely pad, here

SF
P

F
ra

m
e 1

SF
P

F
ra

m
e 2

SF
P

F
ra

m
e 3

Note this Multiplexing algorithm does not affect the basic Segmentation/Reassembly process. In other
words, a given application packet will be segmented the same way regardless of any SFP frame
multiplexing that occurred on the packlets that preceded it. So even though Multiplexing and
Segmentation/Reassembly may occur within the same SFP frame (e.g. SFP Frame 3 in the above
diagram), the Multiplexing and Segmentation processes may be decoupled in the implementation if
desired.

SFP.0 Short Form Specification Page 21
Do not attempt to design to this Short Form specification

All of this can be boiled down to one rule:

The source node allows the multiplexing of the ending segment of a packet with other small packets, as
long as the ending segment is the 1st packlet in the SFP frame. No other combinations of Segmentation
and Multiplexing are allowed.

However you choose to think of it (algorithm or rule), the scheme described above allows a given
implementation to decouple the Multiplexing and Segmentation processes if desired, as shown in the 2nd
figure of section 3.3.1.

Note that the example in section 3.3.1 is not the only recommended implementation of SFP. It’s just
that the SFP multiplexing method described above is flexible enough to accommodate this type of
implementation, as well as other implementations.

The bottom line is this: segmentation and multiplexing are specified such that the implementation of
these two features can be implemented separately.

3.5.1 Packlet Ending Pad

If an SFP frame is multiplexed, the source node adds padding as necessary to the end of each packlet so
as to align the next packlet header in the frame on a 64-bit boundary.

Note that, since there is no “next packlet header in the frame” after the last packlet, no padding is
required after the last packlet. Similarly, when there is only one packlet in the frame (i.e. non-
multiplexed frame), no Packlet Ending Pad is required.

. . . Layer2
Header

Convey
ance 2

Payload NPF
Message

P
ad

 P
ad

Packlet #1 Packlet #2

SFP Frame

Packlet #n

Convey
ance 1

No Ending Pad
Required Here

Refer to the full specification of SFP.0 for further details on the Packlet Ending Pad.

SFP.0 Short Form Specification Page 22
Do not attempt to design to this Short Form specification

4 APPENDIX
This section adds additional explanatory information.

4.1 MULTIPLEXING TRADE-OFF ANALYSIS
The following examples use SFP over Ethernet/VLAN fabric.

The overhead for Ethernet with VLAN Fabric is:
Field # of bytes

Preamble 7
Start of Frame 1

Mac Header 14
VLAN Header 4

Frame Check Sequence 4
Inter-frame gap 12

Ethernet with VLAN 42

The total fabric overhead may be expressed as the SFP Frame overhead plus the SFP Packlet overhead.

The SFP Frame overhead is the Ethernet with VLAN overhead + the SFP Conveyance Header 1 size.

Field # of bytes
Ethernet with VLAN 42

SFP Conveyance Header 1 6
SFP Frame Overhead 48

This overhead figure of 48 bytes is used in the 2 sections below for comparison purposes.

The SFP Packlet overhead is 8 bytes (i.e. SFP Conveyance Header 2 plus NPF UID field).

SFP.0 Short Form Specification Page 23
Do not attempt to design to this Short Form specification

4.1.1 TCP ACK packets over POS

This example assumes that a Packet Over Sonet (POS) I/O port is receiving back-to-back TCP ACK
packets. A TCP ACK packet consists of

Header # of
bytes

POS Header, Flags &
CRC

8

IP Header 20
TCP Header 20

TCP ACK Length 48

The POS Layer2 overhead is stripped off and the remaining 40 bytes are sent over the SFP Fabric (i.e.
routing application). For this example, let’s assume that 10 TCP ACK packets are sent back-to-back
over the POS interface. This corresponds to 480 bytes over the POS interface. These 480 bytes get
expanded over the Fabric, as shown in the spreadsheet below.

Over Fabric Without Multiplexing Over Fabric With Multiplexing
SFP Frame Overhead 48 SFP Packlet Overhead 8
SFP Packlet Overhead 8 TCP ACK Payload 40
TCP ACK Payload 40 Sum Above 48
Sum Above 96 x10 packlets 480
x10 packets 960 bytes +SFP Frame Overhead 48

528 bytes

The amount of overhead for Fabric headers versus POS I/O headers is calculated below.

Without Multiplexing
960/480 = 2 (100% overhead)

With Multiplexing
528/480 = 1.1 (10% overhead)

To further illustrate the issue with TCP ACK packets over POS, consider the case of a line card with an
OC-12 (i.e. 622 Mbits/sec) interface connected to a Gigabit Ethernet Fabric. Without SFP
multiplexing, this scenario would not be viable, as back-to-back TCP ACK packets would double the
bandwidth to over 1.2 Gbits/sec. However, with SFP multiplexing, the data rate would fit comfortably
into a Gigabit Ethernet fabric, even with back-to-back TCP ACKs.

SFP.0 Short Form Specification Page 24
Do not attempt to design to this Short Form specification

4.1.2 Wireless UMTS AMR Voice Packet

This example assumes that compressed voice packets using the AMR codec are being sent back-to-back
over the wireless airwaves. The over-the-air bandwidth is generally used to specify the amount of
wireless traffic. Since AMR voice packets are aggregated over the air, the specific amount of header
overhead is approximated below.

Field # of
bytes

Total Wireless Headers
(approximate)

2

AMR voice payload 12
Total AMR packet length 14

For this example, lets assume that 10 AMR Voice packets are sent back-to-back over the air. This
corresponds to 140 bytes over the air. These 140 bytes get expanded over the Fabric, as shown in the
spreadsheet below.
Over Fabric Without Multiplexing Over Fabric With Multiplexing
SFP Frame Overhead 48 SFP Packlet Overhead 8
SFP Packlet Overhead 8 AMR Voice Packet 14
AMR Voice Packet 14 Packlet Ending Pad 2
Sum Above 70 Sum Above 24
x10 packets 700 bytes x10 packlets 240

+SFP Frame Overhead 48
288 bytes

The amount of overhead for Fabric headers versus Wireless over-the-air headers is calculated below.

Without Multiplexing
700/140 = 5 (400% overhead)

With Multiplexing
288/140 = 2.06 (106% overhead)

SFP.0 Short Form Specification Page 25
Do not attempt to design to this Short Form specification

4.2 SFP Fault Tolerance Examples
This section is intended to explore the SFP issues that can arise from certain example redundancy or
fault tolerance schemes. For simplicity, all example redundancy schemes discussed here have 2
completely separate Ethernet fabrics. Each node has 2 separate NIC interfaces, one for each fabric.
Note that SFP will support other types of fault tolerance schemes, but the discussion in this section will
be limited to a few commonly used redundancy schemes.

4.2.1 Active / Active

In this redundancy scheme, both fabrics are used actively with different flows being load balanced across
the 2 fabrics. If one fabric fails, all connections over the faulty fabric must be moved to the other (i.e.
still functional) fabric.

Since this scheme has two different active paths, there needs to be 2 different SFP.0 Flow Bundle values
assigned. Otherwise, the destination would not have a workable context to check the received sequence
numbers, segmentation/reassembly state, etc.

When a fault occurs, the connections have to be moved from one Flow Bundle to another. In addition,
the Ethernet/MAC addresses may also be different for the 2 fabrics, so this may have to be changed on a
fault as well.

The major advantage of this redundancy scheme is that the full bandwidth of both fabrics is usually
available for bursty data. The main disadvantage is that the amount of time to move connections on a
fault is generally much longer.

4.2.2 Active / Standby – Destination Select

In this scheme, the source node always transmits the same data redundantly over both fabrics. All
destination nodes listen only to one fabric (i.e. the one that is deemed active). When a fault occurs on
the active fabric, the destination nodes switch and listen to the other (previously standby) fabric.

Since the destination node only listens to one fabric at a time, the same Flow Bundle value may be used
across both fabrics. This would allow flows (i.e. UID values) to retain the same Flow Bundle value
after a failover. However, depending on how the Ethernet/MAC addresses are allocated, the
Ethernet/MAC addresses may be different for the 2 fabrics, which means that the source and destination
MAC address for a given UID flow may be different after a failover. Alternatively, if the endpoint
nodes support an option to use the same Ethernet MAC addresses for the redundant fabrics, then these
addresses would not change after a failover.

4.2.3 Active / Standby – Source Select

In this scheme, the source node only transmits user data over one fabric (i.e. the active fabric). The
standby fabric may have some health monitoring packets sent, but no real data. When a fault occurs on
the active fabric, the source nodes switch and send all user data to the other (previously standby) fabric.

The destination node receives user data from only one fabric at a time, except possibly for a very short
time during a failover switch. For this reason, the same Flow Bundle value may be used across both
fabrics. This would allow flows (i.e. UID values) to retain the same Flow Bundle value after a failover.

However, depending on how the Ethernet/MAC addresses are allocated, the Ethernet/MAC addresses
may be different for the 2 fabrics, which means that the source and destination MAC address for a given

SFP.0 Short Form Specification Page 26
Do not attempt to design to this Short Form specification

UID flow may be different after a failover. If the MAC addresses are different, the Flow Bundle
structures (e.g. virtual output queue structures) at the source node must be updated to use the new
Ethernet addresses, otherwise the packets won’t be delivered by the fabric.

Alternatively, if the endpoint nodes support an option to use the same Ethernet MAC addresses for the
redundant fabrics, then these addresses would not change after a failover.

